Hand Gesture Recognition for Sign Language : A New Higher Order Fuzzy HMM Approach
نویسندگان
چکیده
Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD) that optimally exposes the geometric structure of a matrix. SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi-attribute hand gesture data to feature vectors. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additively constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 95.5% for cluttered hand images.
منابع مشابه
MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملKey Frame Selection for One-Two Hand Gesture Recognition with HMM
The sign language recognition is the most popular research area involving computer vision, pattern recognition and image processing. It enhances communication capabilities of the mute person. In this paper, I present an object based key frame selection. Forward Algorithm is used for shape similarity for one and two handed gesture recognition. That recognition is with feature and without feature...
متن کامل3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملHand Gesture Recognition for Sign Language: A New Hybrid Approach
This paper proposes two new approaches of hand gesture recognition which will recognize sign language gestures in a real time environment. A hybrid feature descriptor, which combines the advantages of SURF & Hu Moment Invariant methods, is used as a combined feature set to achieve a good recognition rate along with a low time complexity. To further increase the recognition rate and make the rec...
متن کامل